(Pages: 2)

Reg.	No.	12	Ħ	ut				11	 g (m			1 4		*	*			

Name:

Seventh Semester B.Tech. Degree Examination, June 2016 (2008 Scheme) 08.702 : OPTICAL COMMUNICATION (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each carries 4 marks.

- 1. Define quantum efficiency and responsivity of a photodetector.
- 2. What are the noises in EDFA?
- 3. What are solitons?
- 4. What are the different types of fiber cables?
- 5. Explain briefly about the non-linear effects in optical fibers.
- 6. List the demerits of soliton based communication system.
- 7. Find the percentage of optical power injected to a step index fiber from an LED. The v-parameter of the fiber is 2.4 and radics of the core $a=5~\mu$ m operating at 1300 nm.
- 8. What are the advantages of DFB laser and tunable laser?
- 9. What is meant by Amplified Spontaneous Emission (ASE)?
- Briefly explain about bending losses in fibers.

TRIVANDRUM-

PART-B

Answer any two questions from each Module. All questions carry equal marks.

Module - I

- 11. Explain the chemical vapour deposition process of fiber fabrication with suitable diagram.
- 12. a) Explain the principle and working of DFB laser.
 - b) A graded index fiber has a core with a parabolic refractive index profile which has a diameter of 50 μ m. The fiber has a numerical aperture of 0.2. Estimate the total no. of guided modes propagating in the fiber when it is operating at a wavelength of 1 μ m.

- 13. a) What are the different sources of noise in photodetectors?
 - b) Derive the expression for numerical aperture. Show that the light injected to a fiber from an LED is given by (WA)² × light radiated by an LEb.

Module - II

- 14. Explain the principle and working of EDFA and also explain how the signal gain of EDFA vary with Erbium doped fiber length.
 - Explain the working of PSK heterodyne detection system and derive an expression for BER.
 - Explain the working principle of OTDR. Discuss how the technique may be used to take field measurements on optical fibers.

Module - III

- 17. Draw the structure of soliton link and explain the different problems in soliton system using lumped EDFA repeaters.
- 18. Explain briefly.
 - a) Soliton lasers
 - b) Add/Drop Multiplexers (ADM).
- 19. Explain the architecture of WDM with block diagram and discuss the challenges in DWDM.